Archivo de la etiqueta: mecánica vectorial

Cinemática vectorial: sistemas de referencia, vectores posición, velocidad y aceleración

La Cinemática se ocupa de describir matemáticamente el movimiento de los cuerpos materiales, en este artículo sólo trataremos cuerpos de dimensiones puntuales, y en este caso simple la descripción del movimiento se basa en los conceptos de posición, velocidad y aceleración. La Cinemática Vectorial, parte de la Mecánica Vectorial, usa la matemática de los vectores, el Álgebra vectorial y el Cálculo diferencial vectorial, para describir y calcular posiciones, velocidades y aceleraciones.

El movimiento es siempre relativo a quién lo describe; el pasajero de un tren de alta velocidad describirá el movimiento dentro del tren de forma distinta a un observador que ve pasar el tren y mira en su interior. Es por esto que se necesita decidir un sistema de referencia antes de calcular nada. En Mecánica Vectorial, escoger un sistema de referencia equivale a escoger un punto O origen de coordenadas, y una base vectorial del espacio, que serán dos o tres vectores (dependiendo de si el espacio que consideramos es plano o tridimensional) unitarios (de módulo igual  la unidad) y perpendiculares entre sí (ortogonales), en el caso del espacio tridimensional, además escogemos una orientación de la base.

Referencias y vector posición

La cinemática del punto usa el concepto de espacio euclídeo para representar el espacio físico real: para definir un marco de referencia euclídeo debemos dar un origen de coordenadas O y una base, que para el espacio tridimensional es un conjunto de tres vectores ortogonales unitarios e_1,e_2,e_3 (también llamados ortonormales).

Fig. 1: ejes ortogonales, base ortogonal, origen de coordenadas, definen una referencia euclídea
Fig. 1: ejes ortogonales, base ortogonal, origen de coordenadas, definen una referencia euclídea

Cualquier punto P en el espacio tendrá asociado un vector de posición OP, que se expresará según una combinación lineal de los vectores de la base; esto significa que, dados dos sistemas de referencia con el mismo origen O pero distintas bases, los vectores de posición de un mismo punto del espacio P serán distintos en cada referencia. También, dos referencias con la misma base pero distintos orígenes O, O' darán, para un mismo punto del espacio, diferentes vectores de posición.

Ejemplo 1: En el sistema de referencia Ref1, el vector posición OP de un punto tiene por coordenadas (0, 2, 2); otro sistema de referencia Ref2 tiene los ejes paralelos a Ref1, y la misma base, pero su origen O' tiene coordenadas en Ref1 (0, 0, -2). Determinar el vector posición O'P en la referencia Ref2.

Fig. 2: dos referencias con distintos orígenes y la misma base
Fig. 2: las dos referencias del ejemplo 1

En la figura 2 vemos la geometría del problema; el vector O'P forma un triángulo con los vectores OP, OO'. Usando las propiedades de los vectores, O'P = O'O + OP; el vector O'O es el inverso de OO', el cual a su vez es el vector posición de O' respecto a O, que es un dato del problema: O'O = -OO' = - (0, 0, -2) = (0, 0, 2). Nos queda:

O'P = O'O + OP = (0, 0, 2) + (0, 2, 2) = (0, 2, 4).

Ejemplo 2: Cuando dos referencias Ref1, Ref2 difieren en sus bases, puede determinarse el vector posición en una referencia conociendo el de la otra usando la matriz de cambio de base [S]; se cumple, para un vector cualquiera u:

{\left\{\overset\rightharpoonup u\right\}}_{Ref1}=\left[S\right]{\left\{\overset\rightharpoonup u\right\}}_{Ref2} [1]

donde la matriz [S]  tiene por columnas los componentes de la base de Ref2 en la base de Ref1. Por ejemplo, sea la base de Ref1 la habitual (1,0,0), (0,1,0), (0,0,1), y la base de Ref2 expresada según la base de Ref1, \left(1/\sqrt2,1/\sqrt2,0\right),\;\left(1/\sqrt2,-1/\sqrt2,0\right),\;(0,0,1). La matriz de cambio de base es

\left[S\right]=\begin{bmatrix}1/\sqrt2&1/\sqrt2&0\\1/\sqrt2&-1/\sqrt2&0\\0&0&1\end{bmatrix}

Si el punto P tiene coordenadas (1,1,1) en Ref2, entonces en Ref1 serán

\left[S\right]\cdot\left(1,1,1\right)=\begin{bmatrix}1/\sqrt2&1/\sqrt2&0\\1/\sqrt2&-1/\sqrt2&0\\0&0&1\end{bmatrix}\cdot\begin{bmatrix}1\\1\\1\end{bmatrix}=\begin{bmatrix}2/\sqrt2\\0\\1\end{bmatrix}.

Referencias móviles, y referencias galileanas

Se da el caso de que puede haber movimiento entre referencias: diremos que son referencias móviles; en el caso especial de que el movimiento sea rectilíneo uniforme, diremos que son referencias galileanas, también denominadas sistemas de referencia inerciales. Un espacio euclídeo descrito por referencias galileanas representa un espacio físico homogeneo (todos los puntos tienen las mismas propiedades) e isótropo (en todas las direcciones posibles el espacio tiene las mismas propiedades), y un tiempo uniforme (transcurre al mismo ritmo en todo el espacio). Las leyes de Newton fueron enunciadas, y sólo se cumplen en, sistemas de referencia inerciales.

Si la referencia móvil tiene aceleración (no describe un movimiento rectilíneo uniforme), decimos que es una referencia no galileana, o equivalentemente,  una referencia no inercial. En estas referencias no se cumplen las leyes de Newton.

Dado que, en la práctica, se dan muchos casos de movimientos complicados, que son composición de diversos movimientos, y dan lugar a ecuaciones y expresiones también complicadas, es muy útil expresar esos movimientos según vectores usando una base móvil, que "acompañe" al cuerpo móvil, para simplificar las expresiones. Pero hemos dicho que una base móvil con aceleración, no es un sistema de referencia inercial, y por tanto en ella no se cumplen las leyes de Newton. Para resolver este punto, se recurre al "truco" de encontrar los vectores posición, velocidad y aceleración respecto a una base fija inercial, en la que se cumplen las leyes de Newton, pero expresando las componentes de los vectores en una base móvil adecuada para simplificar las expresiones. Dado que la velocidad es la derivada de la función posición, y la aceleración es a su vez la derivada de la velocidad, lo que acabamos de decir implica que tenemos que saber derivar un vector que está expresado en una base que es móvil (no inercial, en general), respecto a otra base que es fija (más exactamente, inercial).

Vector velocidad

El vector velocidad de un punto P relativo a la referencia Ref se define por la expresión

{\overset\rightharpoonup v}_{Ref}\left(P\right)={\left.\frac{\operatorname d\overset\rightharpoonup{OP}}{\operatorname dt}\right|}_{Ref}=\underset{\triangle t\rightarrow0}{lim}\frac{\overset\rightharpoonup{OP}\left(t+\triangle t\right)-\overset\rightharpoonup{OP}\left(t\right)}{\triangle t}

Es importante notar que la derivada se define también respecto a la referencia; si la referencia no es fija sino que se está moviendo, la derivada tendrá que tener en cuenta la variación creada por este movimiento. Pensemos que, un punto fijo en una referencia Ref1, se verá como móvil en otra referencia Ref2 que se está moviendo respecto a Ref1.

Derivación de vectores respecto a bases móviles

Supongamos que tenemos un vector cualquiera u expresado respecto a una base móvil. Para calcular su derivada respecto a una referencia fija:

{\left.\frac{\operatorname d\overset\rightharpoonup u}{\operatorname dt}\right|}_{Ref}={\textstyle\sum_{i=1}^3}\frac{\operatorname du_i}{\operatorname dt}\cdot{\overset\rightharpoonup e}_i+{\textstyle\sum_{i=1}^3}u_i\cdot{\left.\frac{\operatorname d{\overset\rightharpoonup e}_i}{\operatorname dt}\right|}_{Ref} [2]

donde las e_i son los vectores de la base móvil, u_i las componentes del vector u en la base móvil.  Damos ahora la siguiente propiedad algebraica, que no demostramos:

Propiedad 1: la derivada temporal de una base móvil respecto a una referencia fija puede expresarse mediante el producto vectorial de la velocidad angular de la base por cada uno de los vectores de la base.

{\left.\frac{\operatorname d\overset\rightharpoonup{e_i}}{\operatorname dt}\right|}_{Ref}=\overset\rightharpoonup\omega\times\overset\rightharpoonup{e_i} [3]

Usando [3] en [2] obtenemos

\begin{array}{l}{\left.\frac{\operatorname d\overset\rightharpoonup u}{\operatorname dt}\right|}_{Ref}={\textstyle\sum_{i=1}^3}\frac{\operatorname du_i}{\operatorname dt}\cdot{\overset\rightharpoonup e}_i+{\textstyle\sum_{i=1}^3}u_i\cdot\overset\rightharpoonup\omega\times\overset\rightharpoonup{e_i}=\\{\textstyle\sum_{i=1}^3}{\textstyle\frac{\operatorname du_i}{\operatorname dt}}{\textstyle\cdot}{\textstyle\overset\rightharpoonup e}{\textstyle+}{\textstyle\overset\rightharpoonup\omega}{\textstyle\times}{\textstyle\sum_{i=1}^3}{\textstyle u}{\textstyle{}_i}{\textstyle\cdot}{\textstyle\overset\rightharpoonup{e_i}}{\textstyle=}{\textstyle\;}{\textstyle\sum_{i=1}^3}{\textstyle\frac{\operatorname du_i}{\operatorname dt}}{\textstyle\cdot}{\textstyle\overset\rightharpoonup e}{\textstyle+}{\textstyle\overset\rightharpoonup\omega}{\textstyle\times}{\textstyle\overset\rightharpoonup u}\end{array}

Podemos resumir este resultado así:

\boxed{{\left\{{\left.\frac{\operatorname d\overset\rightharpoonup u}{\operatorname dt}\right|}_{Ref}\right\}}_{base}={\left\{\frac{\operatorname d\overset\rightharpoonup u}{\operatorname dt}\right\}}_{base}+{\left\{\overset\rightharpoonup\omega{\textstyle\times}{\textstyle\overset\rightharpoonup u}\right\}}_{base}} [4],

que se expresará como propiedad así:

Propiedad 2: La derivada temporal respecto de una referencia fija de un vector u expresado en una base móvil es igual a la derivada temporal respecto a la base móvil más el producto vectorial de la velocidad angular de la base móvil (respecto la referencia fija) por el vector u.

Ejemplo 2: Un disco de radio R está girando respecto nuestro sistema de referencia fijo con una velocidad angular Ω. Encima del disco, a una distancia r del centro, una partícula P se está moviendo a velocidad constante y siguiendo una línea paralela al diámetro del disco, como muestra la figura 3; en el instante t = 0 ocupaba la posición O'. Definimos la referencia Ref1 como la fija, y la Ref2 con origen en O', un eje que sigue la trayectoria del punto, y el otro eje perpendicular al anterior; esta Ref2 vista desde la Ref1 gira con el disco, como se ve en la figura 3. Notar que, al no tener movimiento rectilíneo uniforme, Ref2 no es galileana. Hallar el vector velocidad de P respecto la Ref1 en (a) la base de Ref2, (b) la base de Ref1.

 

Fig. 3: referencias fijas y móviles

 La velocidad de P respecto la Ref1 viene dada por la derivada del vector OP respecto a Ref1; queremos expresar este vector en la base de la Ref2, que es móvil. Para ello, usamos la expresión [4], siendo el vector \overrightarrow u=\overrightarrow{OP}. El vector OP cumple OP = OO' + O'P, tenemos que expresar estos vectores en la base móvil de la Ref2:

\begin{array}{l}{\left\{\overrightarrow{OP}\right\}}_{Ref2}={\left\{\overrightarrow{OO'}\right\}}_{Ref2}+{\left\{\overrightarrow{O'P}\right\}}_{Ref2}=\\\begin{bmatrix}0\\r\\0\end{bmatrix}+\begin{bmatrix}vt\\0\\0\end{bmatrix}=\begin{bmatrix}vt\\r\\0\end{bmatrix}\end{array}

El vector velocidad angular de Ref2, expresado en la base de Ref2, es

{\left\{\Omega\right\}}_{Ref2}=\begin{bmatrix}0\\0\\\omega\end{bmatrix}

ya que los ejes Z son paralelos en Ref1 y Ref2. Aplicamos [4]:

\begin{array}{l}{\left\{{\left.\frac{\operatorname d\overset\rightharpoonup u}{\operatorname dt}\right|}_{Ref}\right\}}_{base}={\left\{\frac{\operatorname d\overset\rightharpoonup u}{\operatorname dt}\right\}}_{base}+{\left\{\overset\rightharpoonup\omega{\textstyle\times}{\textstyle\overset\rightharpoonup u}\right\}}_{base}=\\\frac d{dt}\begin{bmatrix}vt\\r\\0\end{bmatrix}+\begin{bmatrix}0\\0\\\omega\end{bmatrix}\times\begin{bmatrix}vt\\r\\0\end{bmatrix}=\begin{bmatrix}v\\0\\0\end{bmatrix}+\begin{vmatrix}i&j&k\\0&0&\omega\\vt&r&0\end{vmatrix}=\begin{bmatrix}v\\0\\0\end{bmatrix}+\begin{bmatrix}-r\omega\\\omega vt\\0\end{bmatrix}=\begin{bmatrix}v-r\omega\\\omega vt\\0\end{bmatrix}\end{array}. [5]

Para pasar este vector velocidad de la base de Ref2 a la de Ref1, usamos la matriz de cambio de base S, que recordemos que cumple {\left\{u\right\}}_{Ref1}=\left[S\right]\cdot{\left\{u\right\}}_{Ref2}, donde S es la matriz que tiene por columnas los vectores de la base Ref2 expresados según la base Ref1:

\left[S\right]=\begin{bmatrix}\sin\left(\theta\right)&\cos\left(\theta\right)&0\\-\cos\left(\theta\right)&\sin\left(\theta\right)&0\\0&0&1\end{bmatrix} [6]

donde \theta es el ángulo formado por los ejes de Ref2 y Ref1, que será igual a la velocidad angular por el tiempo: \theta=\omega t. Los coeficientes de la matriz S los deducimos de la geometría del problema:

Fig. 4: Los vectores e1, e2 de la base móvil Ref2 pueden descomponerse según las direcciones de los ejes de Ref1
Fig. 4: Los vectores e1, e2 de la base móvil Ref2 pueden descomponerse según las direcciones de los ejes de Ref1

Aplicamos el cambio de base:

{\left\{\overrightarrow v\left(P\right)\right\}}_{Ref1}=\left[S\right]\cdot{\left\{\overrightarrow v\left(P\right)\right\}}_{Ref2}=\begin{bmatrix}\sin\left(\theta\right)&\cos\left(\theta\right)&0\\-\cos\left(\theta\right)&\sin\left(\theta\right)&0\\0&0&1\end{bmatrix}\begin{bmatrix}v-r\omega\\\omega vt\\0\end{bmatrix}=\begin{bmatrix}\left(v-r\omega\right)\cdot sin\left(\omega t\right)+\omega vt\cdot cos\left(\omega t\right)\\-\left(v-r\omega\right)\cdot cos\left(\omega t\right)+\omega vt\cdot sin\left(\omega t\right)\\0\end{bmatrix} [7].

Comparando [5] con [7] vemos que el último tiene una expresión bastante más complicada, aunque hay que recordar que ambas expresiones son el mismo vector velocidad del punto P respecto Ref1, sólo que expresadas en bases distintas. Es por esto que puede ser conveniente trabajar con bases móviles, para simplificar las expresiones.  En la figura 5 vemos las gráficas de las componentes del vector velocidad [7] respecto al tiempo; son oscilantes con módulo creciente, ya que a medida que P se mueve hacia la periferia del disco, su distancia al centro de giro O aumenta, y por tanto también su velocidad lineal respecto Ref1 (respecto Ref2 es constante). Los picos de velocidad respecto a cada eje corresponden a ceros en el otro eje perpendicular.

Fig. 6: gráficas de las componentes de la velocidad respecto Ref1
Fig. 5: gráficas de las componentes de la velocidad respecto Ref1

Ejemplo 3: Consideramos el mismo disco del ejemplo 2, pero ahora el punto se está moviendo a lo largo de un radio.

velocitat base mòbil6
Fig. 6: movimiento radial de un punto P sobre un disco giratorio

En la referencia móvil Ref2, que está girando con el disco, la posición O'P es simplemente (0, r(t), 0), y el vector OP expresado en la base móvil será el mismo, {OP}ref2 = {O'P}ref2, ya que O y O' coinciden. La velocidad de P respecto la referencia fija Ref1 expresada en función de la base de Ref2 es:

\begin{array}{l}{\left\{{\left.\frac{\operatorname d\overset\rightharpoonup{OP}}{\operatorname dt}\right|}_{Ref}\right\}}_{base}={\left\{\frac{\operatorname d\overset\rightharpoonup{OP}}{\operatorname dt}\right\}}_{base}+{\left\{\overset\rightharpoonup\omega{\textstyle\times}{\textstyle\overset\rightharpoonup{OP}}\right\}}_{base}=\\\frac d{dt}\begin{bmatrix}0\\r(t)\\0\end{bmatrix}+\begin{bmatrix}0\\0\\\omega\end{bmatrix}\times\begin{bmatrix}0\\r(t)\\0\end{bmatrix}=\begin{bmatrix}0\\r'(t)\\0\end{bmatrix}+\begin{vmatrix}i&j&k\\0&0&\omega\\0&r(t)&0\end{vmatrix}=\begin{bmatrix}0\\r'(t)\\0\end{bmatrix}+\begin{bmatrix}-r(t)\omega\\0\\0\end{bmatrix}=\begin{bmatrix}-r(t)\omega\\r'(t)\\0\end{bmatrix}\end{array}

La componente -r(t)\omega es perpendicular a la trayectoria de P, siendo la velocidad tangencial que sabemos del movimiento circular, la componente r'(t) es simplemente la derivada respecto al tiempo de la función r(t), con el sgnificado de velocidad en sentido radial.

Vector aceleración, aceleraciones centrípeta y de Coriolis

El vector aceleración de un punto P relativo a la referencia Ref se define por la expresión

{\overrightarrow a}_{Ref}\left(P\right)={\left.\frac{\operatorname d{\overrightarrow v}_{Ref}\left(P\right)}{\operatorname dt}\right|}_{Ref}=\underset{t\rightarrow0}{lim}\frac{{\overrightarrow v}_{Ref}\left(t+\triangle t\right)-{\overrightarrow v}_{Ref}\left(t\right)}{\triangle t} [8]

Es importante destacar que, al derivar respecto al tiempo el vector velocidad de un punto respecto a una referencia Ref, la derivada ha de realizarse respecto a la misma referencia Ref para que el resultado sea una aceleración, de lo contrario, ¡el vector obtenido puede no tener significado físico!

Además, la derivada nos da la variación instantánea, respecto a la referencia, del vector velocidad, que puede ser en módulo, en dirección, en sentido, o en una combinación de las tres. Por tanto, si una velocidad es nula en un momento dado, o bien tiene un módulo constante, no implica que su derivada sea nula.

Ejemplo 4: Calcular la aceleración de P del ejemplo 3 respecto a la referencia fija Ref1 en las coordenadas móviles de Ref2, considerando que la velocidad de rotación del disco es variable (el disco está acelerando).

Aplicamos la definición [8]

{\overrightarrow a}_{Ref}\left(P\right)={\left.\frac{\operatorname d{\overrightarrow v}_{Ref}\left(P\right)}{\operatorname dt}\right|}_{Ref}=\frac d{dt}{\begin{bmatrix}v-r\omega\\\omega vt\\0\end{bmatrix}}_{Ref}

El vector velocidad viene dado según la base móvil Ref2, pero derivamos respecto a la base fija Ref1, por tanto usamos la expresión [4], abreviamos las derivadas respecto al tiempo usando apóstrofes: r' significa dr/dt, r'' significa d²r/dt², etc:

\begin{array}{l}{\overrightarrow a}_{Ref}\left(P\right)=\frac d{dt}{\begin{bmatrix}-r(t)\omega\\r'(t)\\0\end{bmatrix}}_{Ref}=\frac d{dt}\begin{bmatrix}-r(t)\omega\\r'(t)\\0\end{bmatrix}+\overrightarrow\Omega\times\begin{bmatrix}-r(t)\omega\\r'(t)\\0\end{bmatrix}=\\\begin{bmatrix}-r'(t)\omega+r(t)\omega'\\r''(t)\\0\end{bmatrix}+\begin{bmatrix}i&j&k\\0&0&\omega\\-r(t)\omega&r'(t)&0\end{bmatrix}=\begin{bmatrix}-r'\omega+r\omega'-\omega r'\\r''(t)-\omega^2r\\0\end{bmatrix}=\\\begin{bmatrix}r\omega'-2\omega r'\\r''(t)-\omega^2r\\0\end{bmatrix}\end{array}.

Tenemos aceleración en dos direcciones perpendiculares: ll componente r''-r\omega^2 da cuenta de la aceleración del punto P según r''(t) y además aparece una aceleración adicional, que tiene la misma dirección que el movimiento de P pero sentido contrario, y es la denominada aceleración centrípeta, que sería la única componente que tendríamos si el punto P tuviera velocidad constante o nula respecto el disco.

Como P además se mueve respecto al disco, aparece un componente adicional de aceleración perpendicular al movimiento de P. En el caso particular de que el disco gire con velocidad angular constante, \omega'=0, este término perpendicular se reduce a -2\omega r': esta aceleración tangencial se conoce como aceleración de Coriolis.

Ejemplo 5: calcular la aceleración del punto P del ejemplo 2 respecto a la referencia fija Ref1.

El vector velocidad viene dado según la base móvil Ref2, pero derivamos respecto a la base fija Ref1, por tanto usamos la expresión [4]:

\begin{array}{l}{\overrightarrow a}_{Ref}\left(P\right)=\frac d{dt}{\begin{bmatrix}v-r\omega\\\omega vt\\0\end{bmatrix}}_{Ref}=\frac d{dt}\begin{bmatrix}v-r\omega\\\omega vt\\0\end{bmatrix}+\overrightarrow\Omega\times\begin{bmatrix}v-r\omega\\\omega vt\\0\end{bmatrix}=\\\begin{bmatrix}0\\\omega v\\0\end{bmatrix}+\begin{bmatrix}0\\0\\\omega\end{bmatrix}\times\begin{bmatrix}v-r\omega\\\omega vt\\0\end{bmatrix}=\begin{bmatrix}0\\\omega v\\0\end{bmatrix}+\begin{bmatrix}i&j&k\\0&0&\omega\\v-r\omega&\omega vt&0\end{bmatrix}=\\\begin{bmatrix}0\\\omega v\\0\end{bmatrix}+\begin{bmatrix}-\omega^2vt\\\omega\left(v-r\omega\right)\\0\end{bmatrix}=\begin{bmatrix}-\omega^2vt\\-r\omega^2\\0\end{bmatrix}\end{array}

Sobre las aceleraciones y fuerzas "ficticias", o "pseudofuerzas"

Es una costumbre generalizada llamar ficticias a las aceleraciones que hemos visto que "aparecen" en el cálculo, al derivar vectores expresados en bases no inerciales respecto de bases inerciales, como la aceleración centrípeta o la de Coriolis; el motivo de rebajar estas aceleraciones, que de hecho existen, al rango de "ficticias", es por que, según nos dicen, no hay ningún agente que las provoque, "nadie hace fuerza" para provocar esas aceleraciones. Dado que la 2ª ley de Newton, F = ma, relaciona aceleración con fuerza, se sigue que a cada aceleración ficticia le podemos asociar una fuerza ficticia, o "pseudofuerza". Por ejemplo es esa (pseudo)fuerza centrífuga que, cuando vamos en un coche que coge una curva a gran velocidad, nos presiona contra la puerta que tenemos al lado.

Para mi humilde opinión, esta forma de discriminación entre aceleraciones confunde más que ayuda a comprender la realidad física. Todas las aceleraciones son reales, no existen las ficticias.

Las aceleraciones lo que son es cambios temporales de la velocidad: siempre que el vector velocidad cambie, hay una aceleración. En el caso de un sistema de referencia no inercial, es el propio espacio que tomamos como referencia el que está cambiando las velocidades, que recordemos, son relativas al sistema de referencia, y por tanto, por definición, hay aceleraciones. Estas aceleraciones son las responsables de, por ejemplo, variar la velocidad para que el móvil efectúe un movimiento circular (por tanto no rectilíneo uniforme)

Esto se ve muy bien en la teoría de la Relatividad General y su principio de equivalencia:   la presencia de masa deforma el espacio circundante, que deja de ser euclídeo, por tanto cualquier sistema de referencia que lo represente será no inercial (recordemos que los inerciales se relacionan con espacios euclídeos), y aparecen aceleraciones vinculadas a  la referencia no inercia, en este caso especial, la aceleración no inercial es la gravedad.  De hecho, la gravedad no es una fuerza, sino una aceleración. El peso es la fuerza que contrarresta la aceleración de la gravedad, que nos sostiene en equilibrio; por eso en la caída libre no se experimenta peso alguno, hay sensación de ingravidez. Una explicación de este hecho, muy sencilla, a nivel divulgativo, es esta: Espacio-tiempo curvo para todos los públicos.

Entonces, hay una aceleraciones producidas directamente por fuerzas aplicadas, y hay otras producidas por el espacio de referencia no inercial; en este último caso, también pueden existir fuerzas reales vinculadas: en el caso del coche que toma la curva, la fuerza que hace el asiento, el cinturón de seguridad, y quizás la puerta, sobre nosotros, es la que genera la aceleración centrípeta necesaria para que nuestra masa tome la curva; si soltamos el cinturón y abrimos la puerta, salimos despedidos hacia fuera del coche, en dirección tangencial a la curva, debido a que en ausencia de fuerzas nuestra masa vuelve a la referencia inercial sin aceleración: a la trayectoria recta. En cambio, la fuerza centrífuga si podría llamarse una pseudo-fuerza, pero creo que es más apropiado no llamarla de ningún modo, pues simplemente no existe: no hay ninguna fuerza que nos empuje fuera del coche en la curva, al contrario, hay una única fuerza real, la centrípeta, que nos obliga a tomar la curva.

separador2

Vectores en Física

Invariancia y vectores

Muchas leyes físicas tienen la propiedad llamada invariancia frente a transformaciones de coordenadas, concretamente presentan invariancia respecto a la traslación y a la rotación de los ejes. Por ejemplo, pensemos en una fuerza aplicada sobre un objeto de masa m = 1Kg tal que su magnitud es de 10N y su dirección forma un ángulo de 45 con el eje X, siendo su sentido positivo. Esa fuerza provocará una aceleración sobre el cuerpo, de magnitud dada por la ley de Newton a = F / m = 10N / 1Kg = 10 m/s² y dirección coincidente con la de la fuerza. Si nos preguntamos que cambiará cuando movemos los ejes de coordenadas hacia la derecha, y los giramos 30 grados en sentido antihorario, la respuesta es que la aceleración será exactamente la misma.

La aceleración producida por la fuerza no depende de la traslación o rotación de los ejes de referéncia
Fig. 1: La aceleración producida por la fuerza no depende de la traslación o rotación de los ejes de referencia, lo que varia es su expresión en términos de coordenadas, pero no su magnitud, dirección y sentido

Para aprovechar esta característica de la invariancia y simplificar los enunciados de las leyes y la resolución de problemas se desarrollaron técnicas matemáticas: el álgebra vectorial y el análisis vectorial.

Cuando expresamos una igualdad física en términos de vectores, estamos asegurando que se cumplirá en cualquier sistema de coordenadas.  Las propiedades de transformación de un vector cuando modificamos las coordenadas son las mismas que las de un movimiento en línea recta de un punto A hasta otro B.

Fig. 2: el movimiento de A hasta B puede definirse por las coordenadas según unos ejes de los puntos A, B
Fig. 2: el movimiento de A hasta B puede definirse por las coordenadas según unos ejes de los puntos A, B. En la figura se indican las coordenadas de A en dos ejes de coordenadas distintos.

De la figura 2, usando la geometría del problema y las funciones trigonométricas, y llamando \theta al ángulo que forman los ejes X'Y' con los ejes XY, puede deducirse que las ecuaciones de transformación para pasar de las coordenadas (x, y) a las (x', y') son:

x'=x\cos\left(\theta\right)+y\sin\left(\theta\right),\;y'=ycos\left(\theta\right)-xsin\left(\theta\right) [1]

Como los vectores y los movimientos en linea recta se transforman igual, suele representarse gráficamente un vector como un segmento orientado: una flecha que va de un punto a otro. También se representan por letras en negrita, como F (vector fuerza), o con flechas encima de la letra: \overrightarrow F. A menudo se adjunta al vector sus componentes en unos ciertos ejes, como por ejemplo \overrightarrow F\left(3,4,-1\right), en este caso es importante recordar que implícitamente se está dando también unos ejes de coordenadas. Esto significa que, dados unos números cualesquiera ordenados, como (1, 2, 3), no tienen porque ser un vector, excepto si nos dicen que son las componentes de un vector en unos ejes determinados.

Álgebra vectorial

El álgebra vectorial describe las operaciones matemáticas que podemos efectuar con vectores: podemos sumar y restar vectores entre sí, multiplicarlos entre sí, multiplicarlos por un número real; no podemos dividir un vector por otro, esa operación no está definida. Las reglas de definición de estas operaciones han estado "diseñadas" de forma que se cumpla la invariancia respecto a diferentes ejes de coordenadas. De hecho, las transformaciones de coordenadas dadas por las ecuaciones [1] son transformaciones lineales, por lo que el álgebra vectorial forma parte del álgebra lineal. A partir de estas transformaciones puede demostrarse que si definimos la suma a + b de los vectores \boldsymbol a\left(a_x,a_y\right),\;\boldsymbol b\left(b_x,b_y\right) es tambien un vector, con componentes \left(a_x+b_x,a_y+b_y\right), y que esta suma verifica las propiedades conmutativa, asociativa, tiene  un elemento neutro (el vector nulo) y un elemento opuesto: el opuesto de un vector \boldsymbol a\left(a_x,a_y\right) es también un vector -a de componentes \left(-a_x,-a_y\right).

Definiendo el producto de un vector \boldsymbol a\left(a_x,a_y\right) por un número real k como el vector k\cdot\boldsymbol a\boldsymbol=\left(ka_x,ka_y\right) tenemos completada la denominada estructura de espacio vectorial.

Vectores polares y vectores axiales, o pseudovectores

En Física, los vectores que se transforman según las leyes [1] se denominan vectores polares (o simplemente vectores), pero no cualquier "montaje" \boldsymbol a\boldsymbol=\left(a_x,a_y,a_z,\cdots\right) con cantidades físicas arbitrarias cumplirá las expresiones [1]. Por ejemplo, definamos en cada punto del espacio (x, y, z) la terna (P, T, H) que contiene la presión P, temperatura T y humedad H en ese punto; si cambiamos el sistema de ejes de forma que el punto (x, y, z) pasa a tener coordenadas (x', y', z'), la terna correspondiente seguirá siendo la misma (P, T, H) en ese punto (no cambian la presión ni la temperatura ni la humedad en el punto). Por tanto (P, T, H) no se transforma según las ecuaciones [1] y (P, T, H) no es un vector polar.

En la Física aparecen frecuentemente unos vectores especiales, llamados vectores axiales, o pseudovectores, que se diferencian de los vectores polares al realizar la transformación lineal llamada reflexión respecto de un plano, en la cual dado un vector a y un plano P se busca el vector simétrico b de a respecto de P. En el caso simple de dos dimensiones la reflexión es respecto a una recta, por ejemplo, la reflexión de (x, y) por el eje X (recta y = 0) es el punto (x, -y):

Fig. 3: reflexión de un punto sobre el eje de abscisas X
Fig. 3: reflexión de un punto sobre el eje de abscisas X

Los vectores polares, cuando se reflejan respecto a un plano paralelo a los ejes coordenados, sólo cambian una coordenada, como en el ejemplo de la figura 3. Equivalentemente, un vector polar a(x, y) se transforma en su inverso b(-x, -y)  cuando se cambian de signo sus coordenadas (doble reflexión por planos ortogonales, equivale a girarlo 180⁰), de forma que a + b = 0. Los pseudovectores por su parte cambian todas las coordenadas cuando se reflejan según un plano, equivalentemente, cuando los reflejamos dos veces según los planos coordenados ortogonales obtenemos el pseudovector original.

Fig. 4: dos reflexiones consecutivas de un vector polar respecto de los ejes coordenados resultan en el vector polar inverso del original
Fig. 4: dos reflexiones consecutivas de un vector polar respecto de los ejes coordenados resultan en el vector polar inverso del original

Los vectores axiales necesitan 3 dimensiones para ser visualizados, pero podemos extender su definición a las magnitudes escalares: una magnitud que sólo necesita un número real para expresarse, como por ejemplo la temperatura, se denomina magnitud escalar. Pues bien, igual que existen vectores y pseudovectores, también existen escalares y pseudoescalares.  Los escalares no quedan afectados por una reflexión de los ejes XY, en cambio los pseudoescalares cambian de signo. El ejemplo más simple de pseudoescalar es el módulo de la velocidad angular w en un movimiento circular plano de radio R, en dos dimensiones, con velocidad tangencial v, que numéricamente es w = v²/R; de hecho, la velocidad angular se define como perpendicular al plano de rotación (se "sale" del plano), con un valor positivo si el giro es de derecha a izquierda, y negativo en caso contrario.

Fig. 5: pseudovector velocidad angular, fuente: LP. via Wikimedia Commons

En la figura 6 vemos un movimiento circular plano con dos sistemas de coordenadas, el XY habitual, y otro X'Y' obtenido reflejando sobre el eje X, con lo cual Y' = -Y, y X' = X. En la tabla de la izquierda vemos, en la columna W > 0, la dirección del movimiento cuando la velocidad angular es positiva: en el primer cuadrante se mueve desde el eje X hacia el Y, después del Y hacia el -X, después del -X al -Y, y para terminar del -Y volvemos al X. En la 2ª columna tenemos el movimiento para una velocidad angular negativa. En la 3ª columna está el movimiento visto desde los ejes X'Y', y observamos que coincide con la 2ª columna: este movimiento, según los ejes XY, tiene velocidad angular positiva, pero al reflejar según un eje para obtener los ejes X'Y' la velocidad angular pasa a ser negativa, luego la velocidad angular es un pseudoescalar (en tres dimensiones, será un pseudovector).

Fig. 6: movimiento circular plano y signo de la velocidad angular
Fig. 6: movimiento circular plano y signo de la velocidad angular

Obtención de las coordenadas de un vector axial

La regla de formación habitual de un vector axial en 3 dimensiones w, es formando el denominado producto vectorial de dos vectores polares u, v, denotado por \boldsymbol a\times\boldsymbol b y que se calcula usando el determinante:

\boldsymbol w=\boldsymbol u\times\boldsymbol v\boldsymbol\;=\begin{vmatrix}i&j&k\\u_x&u_y&u_z\\v_x&v_y&v_z\end{vmatrix} [2]

donde i, j, k son los vectores unitarios en las direcciones de los ejes X, Y, Z (también llamados versores) o equivalentemente, desarrollando el determinante, por las expresiones:

Fig.7: pseudovector w como producto vectorial de vectores polares u, v
Fig.7: pseudovector w como producto vectorial de vectores polares u, v. Fuente: es.wikipedia.org/wiki/Producto_vectorial

El producto vectorial cumple que:

  • [vector] x [vector] = [pseudovector]
  • [pseudovector] x [pseudovector] = [pseudovector]
  • [vector] x [pseudovector] = [vector]

Otros ejemplos importantes de vectores axiales son el momento angular L , el par de fuerzas o momento de una fuerza, el campo magnético H , y el momento del dipolo magnético.

Orientación de los ejes y vectores

Hemos visto que las transformaciones de coordenadas denominadas reflexiones afectan de forma distinta a los vectores polares que a los axiales. Otra forma de exponerlo se refiere a la orientación del sistema de referencia en 3 dimensiones, que puede ser de dos tipos, como vemos en la figura 7.

Fig. 7: orientación relativa de los ejes en tres dimensiones. Fuente: Wikipedia under GFDL by en:User:Tarquin

En el sistema de la izquierda pasamos de X a Y siguiendo el movimiento de las agujas del reloj, en el de la derecha vamos al contrario que el reloj; éste último es el que se utiliza habitualmente. Según lo que hemos explicado del producto vectorial, el de la derecha cumple, llamando x al vector unitario según X, y al vector unitario según Y, z al vector unitario según Z, que

\boldsymbol x\times\boldsymbol y\boldsymbol\;=\begin{vmatrix}x&y&z\\1&0&0\\0&1&0\end{vmatrix}=\left(0,0,1\right)=\boldsymbol z

Abreviadamente, \boldsymbol x\times\boldsymbol y\boldsymbol\;=\boldsymbol z, en cambio en el sistema de referencia de la izquierda se cumple que \boldsymbol x\times\boldsymbol y\boldsymbol\;=-\boldsymbol z. Ambos sistemas de coordenadas cartesianos son igualmente válidos para describir las leyes de la Física, aunque de forma estándar se usa el de la derecha.

Análisis vectorial

La otra rama matemática que se ha desarrollado en torno a los vectores tiene que ver con el cálculo diferencial e integral. Considerando que los vectores pueden ser funciones, podemos aplicarles el análisis matemático, teniendo en cuenta sus propiedades como vectores.

Por ejemplo, dado un vector velocidad v variable, que es función del tiempo, como \boldsymbol v=3t\boldsymbol i+t^2\boldsymbol j-6=\left(3t,t^2,-6\right), su derivada será otro vector, el vector aceleración a, que se obtiene derivando cada coordenada por separado:

\frac{\operatorname d\overset\rightharpoonup v}{\operatorname dt}=\left(3t\overset\rightharpoonup i+t^2\overset\rightharpoonup j-6\overset\rightharpoonup k\right)'=3\overset\rightharpoonup i+2t\overset\rightharpoonup j=(3,2t,0),

donde el apostrofe indica la derivada respecto al tiempo: \frac{\operatorname d\overset\rightharpoonup v}{\operatorname dt}=\overset\rightharpoonup v'.

Leyes de Newton en notación vectorial: mecánica vectorial

Como ejemplo importante de análisis vectorial podemos dar la 2ª ley de Newton en forma vectorial, y usando derivadas vectoriales:

\overset\rightharpoonup F=\frac{\operatorname d\overset\rightharpoonup p}{\operatorname dt}=\frac{\operatorname d\left(m\overset\rightharpoonup v\right)}{\operatorname dt} [3]

donde F es el vector fuerza, p es el vector impulso, y v el vector velocidad. La expresión vectorial [3] indica que se cumplen tres igualdades (una para cada componente de los vectores), en un sistema de ejes cartesianos cualquiera. A esta presentación de la dinámica de Newton usando vectores se la denomina Mecánica Vectorial.

Ejemplo 1: un punto material se mueve describiendo una trayectoria curva complicada, de forma que en el instante t = 1 su vector velocidad es (3, 1, -1) y en el instante t = 2 es (2, 0, 0). Calcular su vector aceleración media en ese intervalo de tiempo.

Como no tenemos la expresión de la velocidad como función del tiempo, no podemos usar derivadas, hay que proceder con la definición de aceleración media usando diferencias:

\boldsymbol a=\frac{\triangle\boldsymbol v}{\triangle t}=\frac{(2,\;0,\;0)-(3,\;1,\;-1)}{2-1}=\left(-1,-1,+1\right)

Ejemplo 2: un objeto puntual P se mueve radialmente encima de un disco, moviéndose desde el centro O hacia la periferia, viniendo dada su distancia al centro por la función r(t) = t²+2t.

Fig. 8: partícula con un movimiento radial sobre un disco giratorio
Fig. 8: partícula con un movimiento radial sobre un disco giratorio

El disco gira con velocidad angular \psi'  respecto a nuestro sistema de referencia en reposo, donde \psi es el ángulo que forma el radio que está recorriendo el objeto respecto a su posición inicial, y el apostrofe indica la derivada respecto al tiempo: \psi'=\frac{\operatorname d\psi}{\operatorname dt}.  Calcular la velocidad del objeto respecto a nosotros.

Este tipo de problemas se resuelve considerando la composición de movimientos: tenemos el movimiento del disco, con vector velocidad angular \overset\rightharpoonup\psi=\left(0,0,\psi'\right), ya que hemos visto que al girar en el sentido contrario a las agujas del reloj, el vector velocidad angular saldrá del plano XY en sentido positivo. Por otro lado si definimos otro sistema de coordenadas X'Y'Z' que gira solidariamente con el disco, de forma que su eje X' coincide con la trayectoria del punto P, y su eje Z' coincide con el vector velocidad angular, entonces el vector posición del punto P respecto a X'Y'Z' será \overset\rightharpoonup{OP}=\left(r\left(t\right),0,0\right).

El vector velocidad se obtiene derivando el vector posición, pero como lo queremos respecto al sistema de referencia fijo, usaremos el siguiente resultado del análisis vectorial referente a derivadas con respecto a referencias que se mueven uno respecto a la otra, como es el caso de XYZ y X'Y'Z':

\boxed{{\left.\frac d{dt}\right|}_{XYZ}\overset\rightharpoonup{OP}={\left.\frac d{dt}\right|}_{X'Y'Z'}\overset\rightharpoonup{OP}+\overset\rightharpoonup\psi\times OP}

Lo aplicamos al problema dado:

\begin{array}{l}{\left.\frac d{dt}\right|}_{XYZ}\overset\rightharpoonup{OP}={\left.\frac d{dt}\right|}_{X'Y'Z'}\left(t^2+2t,0,0\right)+\left(0,0,\psi'\right)\times\left(t^2+2t,0,0\right)=\\\left(2t+2,0,0\right)+\left(0,\left(2t+2\right)\psi',0\right)=\left(2t+2,\left(2t+2\right)\psi',0\right)=\\\boxed{\left(2t+2\right)\left(1,\psi',0\right)}\end{array}.

Campos vectoriales y teoría de campos

Cuando asociamos a cada punto del espacio, localizado por su vector posición, otro vector, que representa una magnitud vectorial, estamos definiendo una aplicación vectorial de variable vectorial, que denominamos campo vectorial. Por ejemplo, en el movimiento de un fluido por un conducto, por cada punto del espacio tendremos un vector velocidad del fluido. El análisis matemático aplicado a campos vectoriales proporciona herramientas para obtener analíticamente propiedades del campo físico real; por ejemplo la ley de Faraday que relaciona el campo eléctrico \overset\rightharpoonup E con el campo magnético \overset\rightharpoonup B utiliza derivadas e integrales de línea:

Ley de Faraday. Fuente: https://es.wikipedia.org/wiki/Ecuaciones_de_Maxwell

La rama de la Física Matemática que relaciona los campos vectoriales con los campos físicos reales, como el campo gravitatorio, el eléctrico, etc, es la teoría de campos. Siendo que esta teoría se ha desarrollado hasta abarcar la Mecánica Cuántica y la Física de partículas (como por ejemplo hace la teoría de campos llamada Cromodinámica Cuántica), resulta que prácticamente todo en Física moderna son campos, aunque no vectoriales, sino de un tipo más general.